Smad4 mediates activation of mitogen-activated protein kinases by TGF-beta in pancreatic acinar cells.

نویسندگان

  • D M Simeone
  • L Zhang
  • K Graziano
  • B Nicke
  • T Pham
  • C Schaefer
  • C D Logsdon
چکیده

Transforming growth factor-beta (TGF-beta) inhibits pancreatic acinar cell growth. In many cell types, TGF-beta mediates its growth inhibitory effects by activation of Smad proteins. Recently, it has been reported that Smad proteins may interact with the mitogen-activated protein (MAP) kinase signaling pathways. In this study, we report on the interactions between the TGF-beta and MAP kinase signaling pathways in isolated rat pancreatic acinar cells. TGF-beta activated the MAP kinases extracellular signal-related kinases (ERKs) and p38 in pancreatic acinar cells, but had no effect on c-jun NH2-terminal kinase activity. Activation of MAP kinase by TGF-beta was maximal 4 h after treatment. The ability of TGF-beta to activate ERKs was concentration dependent and dependent on protein synthesis. TGF-beta's stimulation of ERK activation was blocked by PD-98059, an inhibitor of MAP kinase kinase 1, and by adenoviral transfer of dominant negative RasN17. Furthermore, adenoviral-mediated expression of dominant negative Smad4 blocked the ability of TGF-beta to activate acinar cell MAP kinase, demonstrating that this activation is downstream of Smads. The biological relevance of ERK activation by TGF-beta was indicated by demonstrating that inhibition of ERK signaling by PD-98059 blocked the ability of TGF-beta to activate the transcription factor activator protein-1. These studies provide new insight into the signaling mechanisms by which TGF-beta mediates biological actions in pancreatic acinar cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways.

Transforming growth factor (TGF)-beta promotes breast cancer metastasis to bone. To determine whether the osteolytic factor parathyroid hormone-related protein (PTHrP) is the primary mediator of the tumor response to TGF-beta, mice were inoculated with MDA-MB-231 breast cancer cells expressing a constitutively active TGF-beta type I receptor. Treatment of the mice with a PTHrP-neutralizing anti...

متن کامل

Targeted disruption of Smad4 in cardiomyocytes results in cardiac hypertrophy and heart failure.

Transforming growth factor-betas (TGF-betas) are pleiotropic cytokines involved in many physiological and pathological processes, including heart development and heart disease. Smad4 is the central intracellular mediator of TGF-beta signaling. To investigate the function of Smad4 in heart development further, we generated a strain of cardiomyocyte-specific Smad4 knockout mice using the Cre-loxP...

متن کامل

Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism.

BACKGROUND Angiotensin II (Ang II) participates in vascular fibrosis. Transforming growth factor-beta (TGF-beta) is considered the most important fibrotic factor, and Smad proteins are essential components of the TGF-beta signaling system. Our aim was to investigate whether Ang II activates the Smad pathway in vascular cells and its potential role in fibrosis, evaluating connective tissue growt...

متن کامل

Effect of hydrogen sulfide on the phosphatidylinositol 3-kinase-protein kinase B pathway and on caerulein-induced cytokine production in isolated mouse pancreatic acinar cells.

We have shown earlier that mouse pancreatic acinar cells produce hydrogen sulfide (H(2)S) and play a role in the pathogenesis of acute pancreatitis. It is noteworthy that recent evidence indicates that H(2)S has anti-inflammatory effects. To date, the mechanism by which H(2)S directly reduces inflammation has not been elucidated. In the present study, we hypothesized that H(2)S inhibits the pro...

متن کامل

Action of antiproteases on fibrosis in experimental chronic pancreatitis.

Chronic pancreatitis is an irreversible progressive disease characterized by damage to both the exocrine and the endocrine components of the pancreas, eventually resulting in significant exocrine insufficiency and diabetes [1]. The key histopathologic features of chronic pancreatitis are pancreatic fibrosis, acinar atrophy, chronic inflammation, and distorted and blocked ducts [1]. Therapeutic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 281 1  شماره 

صفحات  -

تاریخ انتشار 2001